Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space
نویسندگان
چکیده
Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.
منابع مشابه
Content-based medical image classification using a new hierarchical merging scheme
Automatic medical image classification is a technique for assigning a medical image to a class among a number of image categories. Due to computational complexity, it is an important task in the content-based image retrieval (CBIR). In this paper, we propose a hierarchical medical image classification method including two levels using a perfect set of various shape and texture features. Further...
متن کاملA framework for medical image retrieval using merging-based classification with dependency probability-based relevance feedback
Content-based image retrieval (CBIR) systems are used to retrieve relevant images from large-scale databases. In this paper, a framework for the image retrieval of a large-scale database of medical X-ray images is presented. This framework is designed based on query image classification into several prespecified homogeneous classes. Using a merging scheme and an iterative classification, the ho...
متن کاملیک الگوریتم ردیابی خودرو مبتنی بر ویژگی با استفاده از گروهبندی سلسله مراتبی ادغام و تقسیم
Vehicle tracking is an important issue in Intelligence Transportation Systems (ITS) to estimate the location of vehicle in the next frame. In this paper, a feature-based vehicle tracking algorithm using Kanade-Lucas-Tomasi (KLT) feature tracker is developed. In this algorithm, a merge and split-based hierarchical two-stage grouping algorithm is proposed to represent vehicles from the tracked fe...
متن کاملVisual Pattern Image Coding by a Morphological Approach (RESEARCH NOTE)
This paper presents an improvement of the Visual Pattern image coding (VPIC) scheme presented by Chen and Bovik in [2] and [3]. The patterns in this improved scheme are defined by morphological operations and classified by absolute error minimization. The improved scheme identifies more uniform blocks and reduces the noise effect. Therefore, it improves the compression ratio and image quality i...
متن کاملClustering of Medical X-ray Images by Merging Outputs of Different Classification Techniques
Clustering x-ray images is a complex task, due to the great variations within each class including orientation, alignment and deformation. In this paper, an automatic medical x-ray image clustering is developed by merging the outputs from five different neural networks classifiers. Each classifier employs a set of features derived through different feature-extraction techniques. Such techniques...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013